首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4488篇
  免费   266篇
  国内免费   42篇
林业   234篇
农学   414篇
基础科学   17篇
  440篇
综合类   244篇
农作物   794篇
水产渔业   11篇
畜牧兽医   84篇
园艺   97篇
植物保护   2461篇
  2023年   40篇
  2022年   52篇
  2021年   96篇
  2020年   76篇
  2019年   60篇
  2018年   177篇
  2017年   157篇
  2016年   178篇
  2015年   159篇
  2014年   213篇
  2013年   328篇
  2012年   221篇
  2011年   275篇
  2010年   218篇
  2009年   222篇
  2008年   201篇
  2007年   172篇
  2006年   196篇
  2005年   136篇
  2004年   122篇
  2003年   100篇
  2002年   101篇
  2001年   86篇
  2000年   85篇
  1999年   85篇
  1998年   70篇
  1997年   65篇
  1996年   61篇
  1995年   49篇
  1994年   48篇
  1993年   45篇
  1992年   42篇
  1991年   41篇
  1990年   39篇
  1989年   31篇
  1988年   37篇
  1987年   26篇
  1986年   30篇
  1985年   36篇
  1984年   42篇
  1983年   47篇
  1982年   36篇
  1981年   25篇
  1980年   20篇
  1979年   17篇
  1978年   23篇
  1977年   22篇
  1976年   21篇
  1974年   10篇
  1973年   13篇
排序方式: 共有4796条查询结果,搜索用时 140 毫秒
61.
There is a strong economic incentive to reduce mite-vectored virus outbreaks. Most outbreaks in the central High Plains of the United States occur in the presence of volunteer wheat that emerges before harvest as a result of hail storms. This study provides a conceptual framework for developing a risk map for wheat diseases caused by mite-vectored viruses based on pre-harvest hail events. Traditional methods that use NDVI were found to be unsuitable due to low chlorophyll content in wheat at harvest. Site-level hyperspectral reflectance from mechanically hailed wheat showed increased canopy albedo. Therefore, any increase in NIR combined with large increases in red reflectance near harvest can be used to assign some level of risk. The regional model presented in this study utilized Landsat TM/ETM+ data and MODIS imagery to help gap-fill missing data. NOAA hail maps that estimate hail size were used to refine the area most likely at risk. The date range for each year was shifted to account for annual variations in crop phenology based on USDA Agriculture statistics for percent harvest of wheat. Between 2003 and 2013, there was a moderate trend (R2 = 0.72) between the county-level insurance claims for Cheyenne County, Nebraska and the area determined to be at risk by the model (excluding the NOAA hail size product due to limited availability) when years with low hail claims (<400 ha) were excluded. These results demonstrate the potential of an operational risk map for mite-vectored viruses due to pre-season hail events.  相似文献   
62.
Target spot of soybean has spread in Brazil, the southeastern United States and Argentina in the last decade. A collaborative network of field Uniform Fungicide Trials (UFT) in Brazil was created in 2011 to study the target spot control efficacy of fungicides, including azoxystrobin + benzovindiflupyr (AZ_BF), carbendazim (CZM), fluxapyroxad + pyraclostrobin (FLUX_PYRA), epoxiconazole + FLUX_PYRA (EPO_FLUX_PYRA), mancozeb (MZB) and prothioconazole + trifloxystrobin (PROT_TRIF). Network meta-analysis was used to conduct a quantitative synthesis of UFT data collected from 2012 to 2016 and to evaluate the effects of disease pressure (DP, low ≤ 35% target spot severity in the nontreated control < high) and year of experiment on the overall mean efficacy and yield response to each of the tested fungicides. Based on mean percentage control of target spot severity, the tested fungicides fall into three efficacy groups (EG): high EG, FLUX_PYRA (76.2% control relative to the nontreated control) and EPO_FLUX_PYRA (75.7% control); intermediate EG, PROT_TRIF (66.5% control) and low EG, MZB (49.6% control), AZ_BF (46.7% control) and CZM (32.4% control). DP had a significant effect on yield response. At DPLow, the highest response was due to PROT_TRIF (+342 kg ha−1, +12.8%) and EPO_FLUX_PYRA (+295.5 kg ha−1, +11.2%), whereas at DPHigh, EPO_FLUX_PYRA and FLUX_PYRA outperformed the other treatments, with yield responses of 503 kg ha−1 (+20.2%) and 469 kg ha−1 (+19.1%), respectively. The probability of a positive return on fungicide investment ranged from 0.26 to 0.56 at DPLow and from 0.34 to 0.66 at DPHigh.  相似文献   
63.
One of the economically important diseases of lettuce is lettuce big-vein disease (LBVD), which leads to severe yield losses. LBVD is associated with a complex of two viruses, Lettuce big-vein associated virus (LBVaV) and Mirafiori lettuce big-vein virus (MLBVV). These viruses are transmitted by motile zoospores of Olpidium spp. fungi, which persist in the soil for decades through resting spores. In greenhouse and field experiments, this study tested whether changing plant and soil temperatures together with fungicide application would have a significant effect on controlling LBVD in lettuce. Soil fumigation with metam sodium was not effective at controlling the disease, as opposed to treatment with chloropicrin and methyl bromide. Moreover, the fungicides carbendazim and fluazinam were effective in reducing the incidence of Olpidium virulentus. Nevertheless, control of the fungal vector did not seem to be sufficient to control the disease due to the transition ability of the virus under low vector abundance. Crop covers, which affect the favourable environmental conditions for the viruses by lowering soil temperature and raising air temperature, reduced the disease symptoms. Combining fungicides with crop cover had a synergistic effect on reducing disease symptoms, thus providing a sustainable solution for LBVD.  相似文献   
64.
Watermelon yield loss due to Fusarium wilt is increasing in the U.S., due in part to the emergence of the virulent race 2 of Fusarium oxysporum f. sp. niveum, and to the shift in production to triploid cultivars, which generally have less host resistance than previously grown diploid cultivars. One potential management strategy is the use of soil-applied fungicides to reduce Fusarium wilt. The U.S. national program, interregional project 4 (IR-4) supported multistate trials of soil-applied chemicals to manage Fusarium wilt of watermelon. Greenhouse trials were conducted in Maryland, Indiana and Georgia to test the efficacy of 14 chemicals on Fusarium wilt. Based on the performance of these chemicals in the greenhouse, six in Maryland and Delaware and eight in Indiana were selected for subsequent field evaluations. These chemicals were applied once, as a drench at planting, in field trials in Maryland, Indiana, and Delaware in 2008. The fungicides prothioconazole, acibenzolar-S-methyl, and thiophanate-methyl resulted in the greatest reduction in Fusarium wilt, and caused no phytotoxicity. In Maryland and Indiana in 2009, these chemicals were applied through the drip irrigation line alone and in combination, at 0, 2 and 4 weeks after planting. The experiment was repeated in 2010 in Maryland. Prothioconazole alone and in combination with acibenzolar-S-methyl or/and thiophanate-methyl resulted in the greatest decrease in the area under the disease progress curve (AUDPC) of Fusarium wilt of watermelon in Maryland in 2009. The same trend was observed in 2010 in Maryland where three of the prothioconazole treatments ranked the lowest of all treatments and prothioconazole in combination with thiophanate-methyl had significantly lower Fusarium wilt AUDPC compared to the non-treated control. All chemical applications except for acibenzolar-S-methyl in combination with prothioconazole reduced Fusarium wilt AUDPC in Indiana in 2009. Prothioconazole alone and prothioconazole in combination with thiophanate-methyl ranked lowest in Fusarium wilt AUDPC, although not significantly lower than most other treatments. These studies are the first to demonstrate that the soil-applied fungicides prothioconazole and thiophanate-methyl may provide an additional field management option for Fusarium wilt of watermelon.  相似文献   
65.
The effects of inoculation with two AM fungi (M1, Glomus caledonium; M2, Glomus spp. and Acaulospora spp.) and a fungivorous nematode Aphelenchoides sp. on growth and arsenic (As) uptake of Nicotiana tabacum L. were investigated in soils contaminated with a range of As. The reproduction of Aphelenchoides sp. was triggered by the co-inoculation of AM fungi regardless of AM fungal isolates and As levels. Stimulative effects of Aphelenchoides sp. on the development of mycorrhiza, slightly different between two AM fungi, were found particularly at the lowest As level. Irrespective of mycorrhizal inoculi, increasing soil As level decreased plant growth, but increased plant As uptake. Co-inoculation of AM fungi and Aphelenchoides sp. led plants to achieving further growth and greater As accumulation at the lowest As level. Results showed that the interactions between AM fungi and fungivorous nematodes were important in plant As tolerance and phytoextraction at low level As-polluted soil.  相似文献   
66.
High temperature is a major environmental factor that limits wheat (Triticum aestivum L.) productivity. Climate models predict greater increases in night‐time temperature than in daytime temperature. The objective of this research was to compare the effects of high daytime and high night‐time temperatures during anthesis on physiological (chlorophyll fluorescence, chlorophyll concentration, leaf level photosynthesis, and membrane damage), biochemical (reactive oxygen species (ROS) concentration and antioxidant capacity in leaves), growth and yield traits of wheat genotypes. Winter wheat genotypes (Ventnor and Karl 92) were grown at optimum temperatures (25/15 °C, maximum/minimum) until the onset of anthesis. Thereafter, plants were exposed to high night‐time (HN, 25/24 °C), high daytime (HD, 35/15 °C), high daytime and night‐time (HDN, 35/24 °C) or optimum temperatures for 7 days. Compared with optimum temperature, HN, HD and HDN increased ROS concentration and membrane damage and decreased antioxidant capacity, photochemical efficiency, leaf level photosynthesis, seed set, grain number and grain yield per spike. Impact of HN and HD was similar on all traits. Greater impact on seed set, grain number and grain yield per spike was observed at HDN compared with HN and HD. These results suggest that HN and HD during anthesis cause damage of a similar magnitude to winter wheat.  相似文献   
67.
Plant NADPH oxidases are key regulators of plant–microbe interactions and reactive oxygen species (ROS) are essential to plant defences against pathogens. A significant part in the role played by ROS has been ascribed to plant respiratory burst oxidase homologs (RBOHs). In potato (Solanum tuberosum), where RBOHs were previously shown to be involved in wound-induced oxidative burst, we assessed their expression after inoculation with Verticillium dahliae Kleb. and showed that StRbohA was the only homolog to be differentially induced in potato in response to inoculation. In order to investigate the potential role of this gene in plant protection against wilt diseases, we used Agrobacterium-mediated transformation of Arabidopsis to assess the effects of its overexpression on plant responses to V. dahliae. After inoculation with this pathogen, the transformed Arabidopsis line overexpressing StRbohA showed lower disease severity (percent damaged leaf area and vascular discoloration) as compared to the wild type. It also had higher ROS production and more cell death caused by hydrogen peroxide (H2O2), compared to the wild type. Suberization of root cells was also more pronounced in the line overexpressing StRbohA, and supports a possible role for StRBOHA in plant resistance to V. dahliae. Together, these findings indicate that overexpressed StRbohA in Arabidopsis enhances the ROS-mediated defence mechanisms against V. dahliae and can be a potential tool to improve plant resistance to this and other soilborne pathogens that cause wilts in economically important crops.  相似文献   
68.
69.
Tephritid fruit flies are serious economic pests worldwide. As larvae, they feed and develop within the pulp of host fruits, making infestation difficult to detect by visual inspection. At U.S. ports of entry, incoming produce shipments are checked for infestation by manually cutting open a small sample of fruit and searching for tephritid larvae. Consequently, there is a need for more sensitive, high-throughput screening methods. This study evaluated gas chromatography (GC) as a potential technology for improved detection of hidden infestation. Grapefruits (Citrus × paradisi Macfad.) infested with immature stages of the Caribbean fruit fly Anastrepha suspensa (Loew) (Diptera: Tephritidae) were examined to determine if infested fruit emitted a chemical profile distinct from that of non-infested fruit. Peaks identified by GC analysis were grouped into three classes. Chemicals detected in similar quantities in all samples, or slightly elevated in infested samples, were regarded as non-diagnostic background volatiles. Chemicals highly elevated after oviposition, during the last instar exit stage, and in experimentally-pierced fruit were interpreted to be indicators of citrus peel injury, and included d-limonene and β-ocimene. Chemicals elevated exclusively in the larval infestation stages were considered indicators of feeding damage and potentially diagnostic of infestation, and included hexyl butanoate and an unidentified compound. The peaks associated with injury and feeding were also detectable with a portable ultra-fast GC analyzer that required less than 80 s per sample. Further studies will investigate the potential application of these results for development of a rapid, non-destructive screening method for detection of tephritid infestation.  相似文献   
70.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号